If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9-10n^2=-126
We move all terms to the left:
9-10n^2-(-126)=0
We add all the numbers together, and all the variables
-10n^2+135=0
a = -10; b = 0; c = +135;
Δ = b2-4ac
Δ = 02-4·(-10)·135
Δ = 5400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5400}=\sqrt{900*6}=\sqrt{900}*\sqrt{6}=30\sqrt{6}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{6}}{2*-10}=\frac{0-30\sqrt{6}}{-20} =-\frac{30\sqrt{6}}{-20} =-\frac{3\sqrt{6}}{-2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{6}}{2*-10}=\frac{0+30\sqrt{6}}{-20} =\frac{30\sqrt{6}}{-20} =\frac{3\sqrt{6}}{-2} $
| 12n=180n= | | (2x-3)=6x/5 | | 2(2x+9)=5x+73 | | 3^x-1=2^5x-1 | | X+2x+3-(x+5)=20 | | 10x-9-9=-14x-9+5x | | x+11/2=13 | | 70=10m-20 | | 8^(6x+3)=4 | | 18-2x=4x-12 | | 4+9n=41 | | 3x+4-5x+2=9 | | 5(2x-9)=35 | | 144j^2-1=0 | | (9+4i)^2=0 | | 4s-10=44 | | 3n/8-n/4=2n/2 | | 5x^2+41x-12=0 | | 32w^2-18=0 | | 37=-3+5(x=6 | | 23+n=40 | | 0.6x+0.3=0.3x+0.6 | | 1900x+150=1400+275 | | 3/4n+8=1/4n+1 | | 3/4n+8=1/4n+4 | | x=46+3/4 | | -9=6m+15 | | 12n-3=63 | | (5x-213)+(3x+19)=180 | | -7x-4=-8x+2 | | -7x-4=8x+2 | | (-6-5i)-(2-I)=0 |